Indoor robotic systems within Cyber-Physical Systems (CPS) are increasingly exposed to Denial of Service (DoS) attacks that compromise localization, control and telemetry integrity. We propose a privacy-aware malware detection framework for indoor robotic systems, which leverages hybrid quantum computing and deep neural networks to counter DoS threats in CPS, while preserving privacy information. By integrating quantum-enhanced feature encoding with dropout-optimized deep learning, our architecture achieves up to 95.2% detection accuracy under privacy-constrained conditions. The system operates without handcrafted thresholds or persistent beacon data, enabling scalable deployment in adversarial environments. Benchmarking reveals robust generalization, interpretability and resilience against training instability through modular circuit design. This work advances trustworthy AI for secure, autonomous CPS operations.
翻译:暂无翻译