Human-robot cooperative navigation is challenging under incomplete information. We introduce CoNav-Maze, a simulated environment where a robot navigates with local perception while a human operator provides guidance based on an inaccurate map. The robot can share its onboard camera views to help the operator refine their understanding of the environment. To enable efficient cooperation, we propose Information Gain Monte Carlo Tree Search (IG-MCTS), an online planning algorithm that jointly optimizes autonomous movement and informative communication. IG-MCTS leverages a learned Neural Human Perception Model (NHPM) -- trained on a crowdsourced mapping dataset -- to predict how the human's internal map evolves as new observations are shared. User studies show that IG-MCTS significantly reduces communication demands and yields eye-tracking metrics indicative of lower cognitive load, while maintaining task performance comparable to teleoperation and instruction-following baselines. Finally, we illustrate generalization beyond discrete mazes through a continuous-space waterway navigation setting, in which NHPM benefits from deeper encoder-decoder architectures and IG-MCTS leverages a dynamically constructed Voronoi-partitioned traversability graph.
翻译:暂无翻译