This paper proposes a simple, accurate and computationally efficient method to apply the ordinary unscented Kalman filter developed in Euclidean space to systems whose dynamics evolve on manifolds.We use the mathematical theory called stable embedding to make a variant of unscented Kalman filter that keeps state estimates in closeproximity to the manifold while exhibiting excellent estimation performance. We confirm the performance of our devised filter by applying it to the satellite system model and comparing the performance with other unscented Kalman filters devised specifically for systems on manifolds. Our devised filter has a low estimation error, keeps the state estimates in close proximity to the manifold as expected, and consumes a minor amount of computation time. Also our devised filter is simple and easy to use because our filter directly employs the off-the-shelf standard unscented Kalman filter devised in Euclidean space without any particular manifold-structure-preserving discretization method or coordinate transformation.


翻译:本文提出了一个简单、准确和计算效率高的方法, 将欧几里德空间开发的普通的无温卡尔曼过滤器应用到其动态在多元上演变的系统中。 我们使用称为稳定嵌入的数学理论来制作一个不温和的卡尔曼过滤器的变体, 使国家估计数与多元相近, 同时显示极好的估计性能。 我们确认我们设计的过滤器的性能, 将它应用到卫星系统模型, 并将它的性能与专为多元系统设计的其他无温卡尔曼过滤器进行比较。 我们设计的过滤器有一个低度的估计错误, 使国家估计数与多元相近, 并消耗少量的计算时间。 我们设计的过滤器也很简单和容易使用, 因为我们的过滤器直接使用在欧几里德空间设计的现成标准的无热卡曼过滤器, 没有特定的多结构保持离散方法或协调转换方法。

0
下载
关闭预览

相关内容

卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月30日
Arxiv
0+阅读 · 2023年1月29日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员