This paper introduces a computational framework to reconstruct and forecast a partially observed state that evolves according to an unknown or expensive-to-simulate dynamical system. Our reduced-order autodifferentiable ensemble Kalman filters (ROAD-EnKFs) learn a latent low-dimensional surrogate model for the dynamics and a decoder that maps from the latent space to the state space. The learned dynamics and decoder are then used within an ensemble Kalman filter to reconstruct and forecast the state. Numerical experiments show that if the state dynamics exhibit a hidden low-dimensional structure, ROAD-EnKFs achieve higher accuracy at lower computational cost compared to existing methods. If such structure is not expressed in the latent state dynamics, ROAD-EnKFs achieve similar accuracy at lower cost, making them a promising approach for surrogate state reconstruction and forecasting.
翻译:本文引入了一个计算框架, 用于重建和预测一个部分观察到的状态, 该状态会根据未知或昂贵到模拟的动态系统演变。 我们的减序自动分解的混合体卡尔曼过滤器( ROAD- EnKFs) 学习了一个潜伏的低维动态替代模型和一个解码器, 用于绘制从潜伏空间到国家空间的动态图谱。 然后, 所学的动态和解码器在一个共同的 Kalman 过滤器中用于重建和预报状态。 数字实验显示, 如果国家动态显示隐藏的低维结构, ROAD- EnKFs 就能以比现有方法更低的计算成本实现更高的准确性。 如果这种结构没有在潜伏状态动态中表现出来, ROAD- EnKFs 也能以更低的成本实现类似的精度, 使得它们成为代位国家重建和预测的一个很有希望的方法。