We introduce a multi-fidelity estimator of covariance matrices that employs the log-Euclidean geometry of the symmetric positive-definite manifold. The estimator fuses samples from a hierarchy of data sources of differing fidelities and costs for variance reduction while guaranteeing definiteness, in contrast with previous approaches. The new estimator makes covariance estimation tractable in applications where simulation or data collection is expensive; to that end, we develop an optimal sample allocation scheme that minimizes the mean-squared error of the estimator given a fixed budget. Guaranteed definiteness is crucial to metric learning, data assimilation, and other downstream tasks. Evaluations of our approach using data from physical applications (heat conduction, fluid dynamics) demonstrate more accurate metric learning and speedups of more than one order of magnitude compared to benchmarks.
翻译:我们引入了多纤维性测算共变量矩阵的多变量估计符, 使用对正- 无限方形对数的对数- 欧克利德几何测量法。 测算符将不同忠诚和减少差异的成本的数据来源的样本从不同数据来源的等级结构中混合起来, 同时保证确定性, 与以前的做法不同。 新的测算符使得在模拟或数据收集费用昂贵的应用中, 共变量估计可移动; 为此, 我们开发了一个最佳的样本分配方案, 最大限度地减少定预算的估测仪的中差差差。 保证确定性对于衡量学习、 数据同化和其他下游任务至关重要。 使用物理应用数据( 热操控、 流体动态) 评估我们的方法, 显示比基准更精确的衡量学习和速度超过一个数量级。