Policymakers are required to evaluate the health benefits of reducing the National Ambient Air Quality Standards (NAAQS; i.e., the safety standards) for fine particulate matter PM 2.5 before implementing new policies. We formulate this objective as a shift-response function (SRF) and develop methods to analyze the problem using methods for causal inference, specifically under the stochastic interventions framework. SRFs model the average change in an outcome of interest resulting from a hypothetical shift in the observed exposure distribution. We propose a new broadly applicable doubly-robust method to learn SRFs using targeted regularization with neural networks. We evaluate our proposed method under various benchmarks specific for marginal estimates as a function of continuous exposure. Finally, we implement our estimator in the motivating application that considers the potential reduction in deaths from lowering the NAAQS from the current level of 12 $\mu g/m^3$ to levels that are recently proposed by the Environmental Protection Agency in the US (10, 9, and 8 $\mu g/m^3$).
翻译:在执行新政策之前,要求决策者评估降低国家大气质量常温标准(NAAQS,即安全标准)对微粒物质2.5 PM 2.5 (PM 2.5) 的健康效益,我们将这一目标作为转移反应功能来制定,并制订方法,利用因果推断方法分析问题,特别是根据随机干预框架;战略成果框架模拟观察到的暴露分布的假设变化所产生的利益平均变化;我们提议一种新的广泛应用的双色罗盘方法,利用与神经网络有目标的正规化来学习战略成果框架;我们根据针对边缘估计的不同基准来评估我们提出的方法,作为持续暴露的功能;最后,我们执行我们的预测,以激励性应用,考虑将NAAQS的死亡率从目前的12美元/米克/米3美元降至最近环境保护局提议的10美元、9美元和8美元/穆克/米3美元的水平。