We propose a method to estimate the uncertainty of the outcome of an image classifier on a given input datum. Deep neural networks commonly used for image classification are deterministic maps from an input image to an output class. As such, their outcome on a given datum involves no uncertainty, so we must specify what variability we are referring to when defining, measuring and interpreting uncertainty, and attributing "confidence" to the outcome. To this end, we introduce the Wellington Posterior, which is the distribution of outcomes that would have been obtained in response to data that could have been generated by the same scene that produced the given image. Since there are infinitely many scenes that could have generated any given image, the Wellington Posterior involves inductive transfer from scenes other than the one portrayed. We explore the use of data augmentation, dropout, ensembling, single-view reconstruction, and model linearization to compute a Wellington Posterior. Additional methods include the use of conditional generative models such as generative adversarial networks, neural radiance fields, and conditional prior networks. We test these methods against the empirical posterior obtained by performing inference on multiple images of the same underlying scene. These developments are only a small step towards assessing the reliability of deep network classifiers in a manner that is compatible with safety-critical applications and human interpretation.


翻译:摘要:我们提出了一种方法来估计图像分类器在给定输入数据时结果的不确定性。用于图像分类的深度神经网络是从输入图像到输出类的确定性映射。因此,它们在给定数据上的结果不涉及任何不确定性,因此当定义、测量和解释不确定性并将“置信度”归因于结果时,我们必须指定我们所指的可变性。为此,我们引入了惠灵顿后验,它是会产生给定图像的数据可能生成的场景所产生的结果分布。由于有无数多种场景可以生成任何给定的图像,因此惠灵顿后验涉及对其他场景的归纳转移。我们探讨了使用数据增强、dropout、集成、单视点重建和模型线性化来计算惠灵顿后验的方法。其他方法包括使用条件生成模型,如生成对抗网络、神经辐射场和条件先验网络。我们通过对单个场景的多个图像执行推理获得的经验后验测试了这些方法。这些进展只是向着以一种与安全关键应用和人类解释兼容的方式评估深度网络分类器的可靠性的方向迈出的一小步。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
23+阅读 · 2021年3月4日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员