In the era of the Internet of Things (IoT), blockchain is a promising technology for improving the efficiency of healthcare systems, as it enables secure storage, management, and sharing of real-time health data collected by the IoT devices. As the implementations of blockchain-based healthcare systems usually involve multiple conflicting metrics, it is essential to balance them according to the requirements of specific scenarios. In this paper, we formulate a joint optimization model with three metrics, namely latency, security, and computational cost, that are particularly important for IoT-enabled healthcare. However, it is computationally intractable to identify the exact optimal solution of this problem for practical sized systems. Thus, we propose an algorithm called the Adaptive Discrete Particle Swarm Algorithm (ADPSA) to obtain near-optimal solutions in a low-complexity manner. With its roots in the classical Particle Swarm Optimization (PSO) algorithm, our proposed ADPSA can effectively manage the numerous binary and integer variables in the formulation. We demonstrate by extensive numerical experiments that the ADPSA consistently outperforms existing benchmark approaches, including the original PSO, exhaustive search and Simulated Annealing, in a wide range of scenarios.


翻译:在互联设备 (IoT) 时代,区块链是一种有望提高医疗系统效率的技术,因为它使 IoT 设备收集的实时健康数据的安全存储、管理和共享成为可能。由于基于区块链的医疗保健系统的实施通常涉及多个相互冲突的指标,因此根据特定方案的要求平衡它们具有重要意义。在本文中,我们制定了一个三个指标的联合优化模型,即延迟、安全和计算成本,这对于 IoT-enabled 医疗保健尤其重要。但是,要确定此问题的确切最优解对于实际规模的系统来说是计算上不可行的。因此,我们提出了一种 Adaptive Discrete Particle Swarm Algorithm (ADPSA) 算法,以低复杂度方式获得接近最优解。借助经典的 Particle Swarm Optimization (PSO) 算法的基础,我们提出的 ADPSA 可有效管理公式中的众多二进制和整数变量。通过广泛的数值实验,我们证明 ADPSA 在各种情况下始终优于现有的基准方法,包括原始 PSO、全面搜索和模拟退火算法。

0
下载
关闭预览

相关内容

《校准自主性中的信任》2022最新16页slides
专知会员服务
19+阅读 · 2022年12月7日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
11+阅读 · 2021年12月8日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员