We propose a novel method for training a conditional generative adversarial network (CGAN) without the use of training data, called zero-shot learning of a CGAN (ZS-CGAN). Zero-shot learning of a conditional generator only needs a pre-trained discriminative (classification) model and does not need any training data. In particular, the conditional generator is trained to produce labeled synthetic samples whose characteristics mimic the original training data by using the statistics stored in the batch normalization layers of the pre-trained model. We show the usefulness of ZS-CGAN in data-free quantization of deep neural networks. We achieved the state-of-the-art data-free network quantization of the ResNet and MobileNet classification models trained on the ImageNet dataset. Data-free quantization using ZS-CGAN showed a minimal loss in accuracy compared to that obtained by conventional data-dependent quantization.
翻译:我们建议采用一种新的方法,在不使用培训数据的情况下培训有条件的基因对抗网络(CGAN),称为对CGAN(ZS-CGAN)的零光学习。 对有条件的发电机的零光学习只需要事先培训的(分类)分析模型,不需要任何培训数据。特别是,对有条件的生成者进行培训,以制作标签合成样本,其特征仿照原始培训数据,使用在预先培训模式的批次正常化层中储存的统计数据。我们显示了ZS-CGAN在深神经网络数据无孔化中的有用性。我们实现了ResNet和移动网络分类模型的最新无数据网络四分化。使用ZS-CGAN的无数据四分录显示,与传统的依赖数据的四分录相比,准确性损失很小。