Generative adversarial networks (GANs) are a class of machine-learning models that use adversarial training to generate new samples with the same (potentially very complex) statistics as the training samples. One major form of training failure, known as mode collapse, involves the generator failing to reproduce the full diversity of modes in the target probability distribution. Here, we present an effective model of GAN training, which captures the learning dynamics by replacing the generator neural network with a collection of particles in the output space; particles are coupled by a universal kernel valid for certain wide neural networks and high-dimensional inputs. The generality of our simplified model allows us to study the conditions under which mode collapse occurs. Indeed, experiments which vary the effective kernel of the generator reveal a mode collapse transition, the shape of which can be related to the type of discriminator through the frequency principle. Further, we find that gradient regularizers of intermediate strengths can optimally yield convergence through critical damping of the generator dynamics. Our effective GAN model thus provides an interpretable physical framework for understanding and improving adversarial training.
翻译:生成对抗性网络(GANs)是一组机器学习模型,利用对抗性培训产生与培训样本相同(可能非常复杂)的新样本,与培训样本相同(可能非常复杂)的统计。培训失败的一个主要形式是,在目标概率分布方面,产生者未能完全复制各种模式。在这里,我们提出了一个有效的GAN培训模式,通过在输出空间收集微粒来取代发电机神经网络,从而捕捉学习动态;颗粒还辅之以一个通用核心,该核心对于某些广泛的神经网络和高维输入而言都是有效的。我们简化模型的通用性使我们能够研究模式崩溃发生时所处的环境。事实上,通过不同发电机的有效内核质的实验揭示出一种模式崩溃的转变,其形状可以通过频率原则与歧视者的类型相关联。此外,我们发现,中间优势的梯度调能通过对发电机动态进行关键的阻断而产生最佳的汇合效应。我们有效的GAN模型为理解和改进对抗性培训提供了一个可解释的物理框架。