Open World Object Detection (OWOD), simulating the real dynamic world where knowledge grows continuously, attempts to detect both known and unknown classes and incrementally learn the identified unknown ones. We find that although the only previous OWOD work constructively puts forward to the OWOD definition, the experimental settings are unreasonable with the illogical benchmark, confusing metric calculation, and inappropriate method. In this paper, we rethink the OWOD experimental setting and propose five fundamental benchmark principles to guide the OWOD benchmark construction. Moreover, we design two fair evaluation protocols specific to the OWOD problem, filling the void of evaluating from the perspective of unknown classes. Furthermore, we introduce a novel and effective OWOD framework containing an auxiliary Proposal ADvisor (PAD) and a Class-specific Expelling Classifier (CEC). The non-parametric PAD could assist the RPN in identifying accurate unknown proposals without supervision, while CEC calibrates the over-confident activation boundary and filters out confusing predictions through a class-specific expelling function. Comprehensive experiments conducted on our fair benchmark demonstrate that our method outperforms other state-of-the-art object detection approaches in terms of both existing and our new metrics. Our benchmark and code are available at https://github.com/RE-OWOD/RE-OWOD.
翻译:在本文中,我们重新思考OOOOD试验设置,并提出了指导OOOD基准建设的五项基本基准原则;此外,我们设计了两个针对OOOD问题的特殊公平评估协议,填补了从未知类别角度进行评估的空白;此外,我们引入了一个新颖和有效的OOOOD框架,其中载有一个辅助建议AD(PAD)和一个特定分类分类分类分类分类法(CEC)。 非参数PAD可以协助RPN在无监督的情况下确定准确的未知建议,而CEC则通过一个特定类别驱逐功能校准过分自信激活边界和过滤器,以指导OOOOD基准的构建;根据我们的公平基准进行的全面实验表明,我们的方法超越了其他状态目标探测方法的空白;此外,我们还引入了一个包含辅助建议AD(PAD)和一个特定分类分类分类分类分类法(CEC)。