A recent article on generalised linear mixed model asymptotics, Jiang et al. (2022), derived the rates of convergence for the asymptotic variances of maximum likelihood estimators. If $m$ denotes the number of groups and $n$ is the average within-group sample size then the asymptotic variances have orders $m^{-1}$ and $(mn)^{-1}$, depending on the parameter. We extend this theory to provide explicit forms of the $(mn)^{-1}$ second terms of the asymptotically harder-to-estimate parameters. Improved accuracy of studentised confidence intervals is one consequence of our theory.
翻译:最近有一篇关于广义线性混合模型渐近理论的文章,江等人(2022)推导出了极大似然估计量的渐近方差收敛速率。如果$m$是组数,$n$是组内样本平均数,则渐近方差的阶数为$m^{-1}$和$(mn)^{-1}$,具体取决于参数。我们扩展了这个理论,提供了渐近难以估计的参数的$(mn)^{-1}$二次项的明确形式。改进的学生化置信区间的精度是我们理论的一种后果。