We propose a modification of the improved cross entropy (iCE) method to enhance its performance for network reliability assessment. The iCE method performs a transition from the nominal density to the optimal importance sampling (IS) density via a parametric distribution model whose cross entropy with the optimal IS is minimized. The efficiency and accuracy of the iCE method are largely influenced by the choice of the parametric model. In the context of reliability of systems with independent multi-state components, the obvious choice of the parametric family is the categorical distribution. When updating this distribution model with standard iCE, the probability assigned to a certain category often converges to 0 due to lack of occurrence of samples from this category during the adaptive sampling process, resulting in a poor IS estima tor with a strong negative bias. To circumvent this issue, we propose an algorithm termed Bayesian improved cross entropy method (BiCE). Thereby, the posterior predictive distribution is employed to update the parametric model instead of the weighted maximum likelihood estimation approach employed in the original iCE method. A set of numerical examples illustrate the efficiency and accuracy of the proposed method.
翻译:我们建议修改经改进的跨对流体(iCE)方法,以提高其网络可靠性评估的性能。iCE方法通过参数分布模型从名义密度向最高重要性抽样(IS)密度的过渡,该模型与最佳对流体的反向与最佳对流体进行最小化。iCE方法的效率和准确性在很大程度上受参数模型选择的影响。在具有独立多州组成部分的系统的可靠性方面,对参数系的明显选择是绝对分布。在用标准ICE更新该分布模型时,由于在适应性取样过程中没有从这一类别中采集样本,对某一类别的概率往往会合为0,结果造成低的IS 视向偏差,严重负偏差。为回避这一问题,我们建议使用一种称为Bayesian改进的交叉对流体方法(BICEE)的算法。因此,采用后方预测分布法来更新参数模型,而不是原ICE方法采用的加权最大可能性估计法。一组数字示例说明了拟议方法的效率和准确性。