Covering problems are well-studied in the domain of Operations Research, and, more specifically, in Location Science. When the location space is a network, the most frequent assumption is to consider the candidate facility locations, the points to be covered, or both, to be discrete sets. In this work, we study the set-covering location problem when both candidate locations and demand points are continuous sets on a network. This variant has received little attention, and the scarce existing approaches have focused on particular cases, such as tree networks and integer covering radius. Here we study the general problem and present a Mixed Integer Linear Programming formulation (MILP) for networks with edges' lengths no greater than the covering radius. The model does not lose generality, as any edge not satisfying this condition can be partitioned into subedges of appropriate lengths without changing the problem. We propose a preprocessing algorithm to reduce the size of the MILP, and devise tight big-$M$ constants and valid inequalities to strengthen our formulations. Moreover, a second MILP is proposed, which admits edges' lengths greater than the covering radius. As opposed to existing formulations of the problem (including the first MILP proposed herein), the number of variables and constraints of this second model does not depend on the lengths of the network's edges. This second model represents a scalable approach that particularly suits real-world networks, whose edges are usually greater than the covering radius. Our computational experiments show the strengths and limitations of our exact approach on both real-world and random networks. Our formulations are also tested against an existing exact method.


翻译:在业务研究领域,更具体地说,在位置科学领域,对覆盖的问题进行了深入的研究。当位置空间是一个网络时,最经常的假设是考虑候选设施的位置,所覆盖的点或两者都是离散的组合。在这项工作中,当候选地点和需求点都是网络上连续的组合时,我们研究覆盖设定的定位问题。这个变量没有得到多少注意,现有办法很少集中在特定案例中,例如树网络和覆盖半径的整数。在这里,我们研究一般问题,为边缘长度不大于覆盖半径的网络提供混合的内径线设计(MILP) 。模型不会失去普遍性,因为任何不能满足这一条件的边缘可以在不改变问题的情况下被分割成适当长度的子层。我们提出一个预处理算法,以缩小MILP的规模, 并设计紧凑大- M 值的第二模型, 以及有效的不平等来强化我们的配方。此外,第二个MILP 提议采用比覆盖范围网络的长度要长得多。 模型中的第一边是覆盖网络的长度, 包括我们目前准确的变量的长度。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
11+阅读 · 2022年9月1日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员