Longitudinal studies are subject to nonresponse when individuals fail to provide data for entire waves or particular questions of the survey. We compare approaches to nonresponse bias analysis (NRBA) in longitudinal studies and illustrate them on the Early Childhood Longitudinal Study, Kindergarten Class of 2010-11 (ECLS-K:2011). Wave nonresponse with attrition often yields a monotone missingness pattern, and the missingness mechanism can be missing at random (MAR) or missing not at random (MNAR). We discuss weighting, multiple imputation (MI), incomplete data modeling, and Bayesian approaches to NRBA for monotone patterns. Weighting adjustments are effective when the constructed weights are correlated to the survey outcome of interest. MI allows for variables with missing values to be included in the imputation model, yielding potentially less biased and more efficient estimates. Multilevel models with maximum likelihood estimation and marginal models estimated using generalized estimating equations can also handle incomplete longitudinal data. Bayesian methods introduce prior information and potentially stabilize model estimation. We add offsets in the MAR results to provide sensitivity analyses to assess MNAR deviations. We conduct NRBA for descriptive summaries and analytic model estimates and find that in the ECLS-K:2011 application, NRBA yields minor changes to the substantive conclusions. The strength of evidence about our NRBA depends on the strength of the relationship between the characteristics in the nonresponse adjustment and the key survey outcomes, so the key to a successful NRBA is to include strong predictors.
翻译:暂无翻译