Distributed minimax estimation and distributed adaptive estimation under communication constraints for Gaussian sequence model and white noise model are studied. The minimax rate of convergence for distributed estimation over a given Besov class, which serves as a benchmark for the cost of adaptation, is established. We then quantify the exact communication cost for adaptation and construct an optimally adaptive procedure for distributed estimation over a range of Besov classes. The results demonstrate significant differences between nonparametric function estimation in the distributed setting and the conventional centralized setting. For global estimation, adaptation in general cannot be achieved for free in the distributed setting. The new technical tools to obtain the exact characterization for the cost of adaptation can be of independent interest.


翻译:研究了高斯测序模型和白噪音模型在通信限制下分布的微最大估计和分布式适应性估计; 研究了作为适应费用基准的Besov类别分配估计的最小趋同率; 然后,我们量化了适应的确切通信成本,并构建了用于一系列Besov类别分配估计的最佳适应性程序; 结果表明分布式环境和常规集中式环境的非对称功能估计之间存在巨大差异; 关于全球估计,在分布式环境中一般不可能免费实现适应。 获取适应成本准确特征的新技术工具可能具有独立的兴趣。

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月20日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员