We investigate the product structure of hereditary graph classes admitting strongly sublinear separators. We characterise such classes as subgraphs of the strong product of a star and a complete graph of strongly sublinear size. In a more precise result, we show that if any hereditary graph class $\mathcal{G}$ admits $O(n^{1-\epsilon})$ separators, then for any fixed $\delta\in(0,\epsilon)$ every $n$-vertex graph in $\mathcal{G}$ is a subgraph of the strong product of a graph $H$ with bounded tree-depth and a complete graph of size $O(n^{1-\epsilon+\delta})$. This result holds with $\delta=0$ if we allow $H$ to have tree-depth $O(\log\log n)$. We prove a product strengthening of the result of Dvo\v{r}\'ak and Norin [SIAM J. Discrete Math., 2016] for graphs of polynomial expansion. Finally, we prove that $n$-vertex graphs of bounded treewidth are subgraphs of the product of a graph with tree-depth $d$ and a complete graph of size $O(n^{1/d})$, which is best possible.
翻译:我们调查了遗传图类的产物结构, 以强烈的亚线性分隔器( 0. \\ epsilon} ) 。 我们用$\ mathcal{ G} 来描述这些类的产物结构, 例如恒星的强产物的子体, 以及强烈的亚线性大小的完整图。 更精确的结果是, 如果任何遗传图类 $\\\\ 1-\ \ \ epsilon} 允许 $O( 1-\ \ epsilon} ) 分离器的产物, 那么对于任何固定的 $( 0) delta\ / in ( 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ) 美元, 那么我们证明Dvo\ v{ {r\ \ \ \ 和 Norin [ SIAM J. Dicrete Math.