An industrial connector insertion task requires submillimeter positioning and grasp pose compensation for a plug. Thus, highly accurate estimation of the relative pose between a plug and socket is fundamental for achieving the task. World models are promising technologies for visuomotor control because they obtain appropriate state representation to jointly optimize feature extraction and latent dynamics model. Recent studies show that the NewtonianVAE, a type of the world model, acquires latent space equivalent to mapping from images to physical coordinates. Proportional control can be achieved in the latent space of NewtonianVAE. However, applying NewtonianVAE to high-accuracy industrial tasks in physical environments is an open problem. Moreover, the existing framework does not consider the grasp pose compensation in the obtained latent space. In this work, we proposed tactile-sensitive NewtonianVAE and applied it to a USB connector insertion with grasp pose variation in the physical environments. We adopted a GelSight-type tactile sensor and estimated the insertion position compensated by the grasp pose of the plug. Our method trains the latent space in an end-to-end manner, and no additional engineering and annotation are required. Simple proportional control is available in the obtained latent space. Moreover, we showed that the original NewtonianVAE fails in some situations, and demonstrated that domain knowledge induction improves model accuracy. This domain knowledge can be easily obtained using robot specification and grasp pose error measurement. We demonstrated that our proposed method achieved a 100\% success rate and 0.3 mm positioning accuracy in the USB connector insertion task in the physical environment. It outperformed SOTA CNN-based two-stage goal pose regression with grasp pose compensation using coordinate transformation.
翻译:工业连接器插入任务需要亚光度定位和抓取才能补偿插座。 因此, 高度精确地估计插座和插座之间的相对构成是完成这项任务的根本所在。 世界模型具有前景良好的比武机控制技术, 因为它们获得了适当的国家代表, 共同优化地貌提取和潜伏动态模型。 最近的研究显示, 牛顿伏AE(一种世界模型的型号)获得了与从图像到物理坐标的映像等量的潜伏空间。 可以在牛顿伏埃的潜伏空间中实现比例控制。 然而, 将牛顿伏AE(NewtonianVAE)应用到物理环境中的高度精密工业任务上是一个开放的问题。 此外, 现有的框架并不认为牵引力在获得的潜伏空间空间空间中进行补偿。 在此工作中,我们提出了触动式牛顿VAVAE( ) ( ) ( 牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (纽) (牛顿) (纽) (纽) (牛顿) (纽顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) (牛顿) ) ) ) ) ) ) ) (牛 ) ) ) (牛 ) ) (牛 ) (牛 ) (牛 ) (牛 ) (牛 ) ) (牛 ) ) ) ) ) ) (的) ) ) ) ) ) ) (牛 ) (木 (头) ) (牛 ) (牛 ) (牛 ) (牛 ) (的) (头) (