Learning to rank -- producing a ranked list of items specific to a query and with respect to a set of supervisory items -- is a problem of general interest. The setting we consider is one in which no analytic description of what constitutes a good ranking is available. Instead, we have a collection of representations and supervisory information consisting of a (target item, interesting items set) pair. We demonstrate analytically, in simulation, and in real data examples that learning to rank via combining representations using an integer linear program is effective when the supervision is as light as "these few items are similar to your item of interest." While this nomination task is quite general, for specificity we present our methodology from the perspective of vertex nomination in graphs. The methodology described herein is model agnostic.
翻译:学习排名 -- -- 生成一个查询所特有的、与一组监督项目有关的排名项目列表 -- -- 是一个普遍感兴趣的问题。我们所考虑的背景是,对于何者构成良好的排名没有分析性描述。相反,我们收集了由一对(目标项目、有趣项目组)组成的代表和监督信息。我们在模拟和真实数据实例中进行分析性地展示,如果通过使用整数线性程序合并表述来学习排名,当监督与“这些少数项目与你感兴趣的项目相似”一样轻时是有效的。虽然这一提名任务相当笼统,但我们从图表中从顶点提名的角度介绍了我们的方法。这里描述的方法是模型不可知性。