In this paper, we study local information privacy (LIP), and design LIP based mechanisms for statistical aggregation while protecting users' privacy without relying on a trusted third party. The notion of context-awareness is incorporated in LIP, which can be viewed as explicit modeling of the adversary's background knowledge. It enables the design of privacy-preserving mechanisms leveraging the prior distribution, which can potentially achieve a better utility-privacy tradeoff than context-free notions such as Local Differential Privacy (LDP). We present an optimization framework to minimize the mean square error in the data aggregation while protecting the privacy of each individual user's input data or a correlated latent variable while satisfying LIP constraints. Then, we study two different types of applications: (weighted) summation and histogram estimation and derive the optimal context-aware data perturbation parameters for each case, based on randomized response type of mechanism. We further compare the utility-privacy tradeoff between LIP and LDP and theoretically explain why the incorporation of prior knowledge enlarges feasible regions of the perturbation parameters, which thereby leads to higher utility. We also extend the LIP-based privacy mechanisms to the more general case when exact prior knowledge is not available. Finally, we validate our analysis by simulations using both synthetic and real-world data. Results show that our LIP-based privacy mechanism provides better utility-privacy tradeoffs than LDP, and the advantage of LIP is even more significant when the prior distribution is more skewed.


翻译:在本文中,我们研究当地信息隐私(LIP),并设计基于LIP的统计汇总机制,同时不依赖信任的第三方而保护用户隐私。背景意识的概念被纳入LIP,这可以被视为对对手背景知识的明显模型。它能够设计利用先前分发方式的隐私保护机制,这有可能实现比地方差异隐私(LDP)等无背景概念更好的效用-隐私权衡。我们提出了一个优化框架,以尽量减少数据汇总中的平均平方差,同时保护每个用户输入数据的隐私或相关的潜伏变量,同时满足LIP的限制。然后,我们研究两种不同类型的应用:(加权)比较和直方图估计,并根据随机响应机制类型,为每个案例得出最佳的环境认知数据渗透参数。我们进一步比较了LIP和LDP(LDP)之间的实用性权衡。我们从理论上解释先前知识的整合为何扩大了渗透参数的可行区域,从而导致更高的效用。我们研究两种不同的应用类型:(加权)加和直方图估计,根据随机的LIP(LIP)分析结果,我们更准确地验证了我们先前的保密性数据,这是我们更准确性分析的。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Random and quasi-random designs in group testing
Arxiv
0+阅读 · 2021年1月15日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员