We detail a new framework for privacy preserving deep learning and discuss its assets. The framework puts a premium on ownership and secure processing of data and introduces a valuable representation based on chains of commands and tensors. This abstraction allows one to implement complex privacy preserving constructs such as Federated Learning, Secure Multiparty Computation, and Differential Privacy while still exposing a familiar deep learning API to the end-user. We report early results on the Boston Housing and Pima Indian Diabetes datasets. While the privacy features apart from Differential Privacy do not impact the prediction accuracy, the current implementation of the framework introduces a significant overhead in performance, which will be addressed at a later stage of the development. We believe this work is an important milestone introducing the first reliable, general framework for privacy preserving deep learning.
翻译:我们详细介绍了保护深层学习的隐私新框架,并讨论了其资产。框架重视数据的所有权和安全处理,并引入了基于命令和声调链的有价值的代表。这种抽象允许实施复杂的隐私保护结构,如联邦学习、安全多党计算和差异隐私,同时仍然向最终用户披露熟悉的深层学习API。我们报告了波士顿住房和皮马印第安人糖尿病数据集的早期结果。虽然除不同隐私之外的隐私特征并不影响预测的准确性,但目前框架的实施引入了一个重要的绩效管理,将在开发的后期予以处理。我们认为这项工作是一个重要的里程碑,引入了第一个可靠、一般的隐私保护深层学习框架。