Mobile vision systems such as smartphones, drones, and augmented-reality headsets are revolutionizing our lives. These systems usually run multiple applications concurrently and their available resources at runtime are dynamic due to events such as starting new applications, closing existing applications, and application priority changes. In this paper, we present NestDNN, a framework that takes the dynamics of runtime resources into account to enable resource-aware multi-tenant on-device deep learning for mobile vision systems. NestDNN enables each deep learning model to offer flexible resource-accuracy trade-offs. At runtime, it dynamically selects the optimal resource-accuracy trade-off for each deep learning model to fit the model's resource demand to the system's available runtime resources. In doing so, NestDNN efficiently utilizes the limited resources in mobile vision systems to jointly maximize the performance of all the concurrently running applications. Our experiments show that compared to the resource-agnostic status quo approach, NestDNN achieves as much as 4.2% increase in inference accuracy, 2.0x increase in video frame processing rate and 1.7x reduction on energy consumption.


翻译:智能手机、无人驾驶飞机和高级现实耳机等移动视觉系统正在使我们的生活发生革命性的变化。 这些系统通常同时运行多个应用程序,而且由于启动新应用程序、关闭现有应用程序和应用优先性变化等事件,它们可用的资源在运行时是动态的。 在本文中,我们介绍了NestDNN, 这个框架将运行时资源的动态考虑在内,使拥有资源认知的多租租户能够深入深造移动视觉系统。 NestDNN使每个深层次学习模式能够提供灵活的资源准确性交换。 在运行时,它动态地为每个深层学习模型选择最佳的资源准确性交换,以适应该模型的资源需求与系统现有的运行时间资源的需求。 在这样做时,NestDNNN有效地利用移动视觉系统中的有限资源,共同最大限度地提高同时运行的所有应用程序的性能。 我们的实验表明,与资源可靠现状方法相比,NestDNNNNNNN能够达到4.2%的推算准确性增长、2.0x的视频框架处理率和1.7x能源消耗减少率。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
7+阅读 · 2019年5月31日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Federated Learning for Mobile Keyboard Prediction
Arxiv
5+阅读 · 2018年11月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员