Optimizing expensive to evaluate black-box functions over an input space consisting of all permutations of d objects is an important problem with many real-world applications. For example, placement of functional blocks in hardware design to optimize performance via simulations. The overall goal is to minimize the number of function evaluations to find high-performing permutations. The key challenge in solving this problem using the Bayesian optimization (BO) framework is to trade-off the complexity of statistical model and tractability of acquisition function optimization. In this paper, we propose and evaluate two algorithms for BO over Permutation Spaces (BOPS). First, BOPS-T employs Gaussian process (GP) surrogate model with Kendall kernels and a Tractable acquisition function optimization approach based on Thompson sampling to select the sequence of permutations for evaluation. Second, BOPS-H employs GP surrogate model with Mallow kernels and a Heuristic search approach to optimize expected improvement acquisition function. We theoretically analyze the performance of BOPS-T to show that their regret grows sub-linearly. Our experiments on multiple synthetic and real-world benchmarks show that both BOPS-T and BOPS-H perform better than the state-of-the-art BO algorithm for combinatorial spaces. To drive future research on this important problem, we make new resources and real-world benchmarks available to the community.
翻译:优化由各种变换 d 对象组成的输入空间的黑箱功能,这是许多现实世界应用中的一个重要问题。例如,将功能区块置于硬件设计中,以便通过模拟优化性能。总体目标是尽量减少功能评价的数量,以便找到高性能的变异性。使用巴耶斯优化(BO)框架解决这一问题的关键挑战是权衡统计模型的复杂性和获取功能优化的可容性。在本文件中,我们提议并评价BO 超变换空间(BOPS)的两种算法。首先,BOPS-T与Kendall内核一起使用GOsian代金(GP)代谢模型,并采用基于Thompt抽样的可转移性获取功能优化方法来选择评价的顺序。第二,BOS-H采用GP 代谢模型,与Mallow内核和Hurtical 搜索法优化预期的改进性获取功能。我们从理论上分析BOPS-T的性能表现,以显示他们的遗憾在子线上增长。我们关于多种合成和真实世界基准的实验室的实验,让我们更好地进行这个可使用BROPAS- brow- brow- brow- brow- brow- brow- brow- brownal- brow- brow- brownal- basal basal basal 基准。