This work proposes a hierarchical clustering algorithm for high-dimensional datasets using the cyclic space of reversible finite cellular automata. In cellular automaton (CA) based clustering, if two objects belong to the same cycle, they are closely related and considered as part of the same cluster. However, if a high-dimensional dataset is clustered using the cycles of one CA, closely related objects may belong to different cycles. This paper identifies the relationship between objects in two different cycles based on the median of all elements in each cycle so that they can be grouped in the next stage. Further, to minimize the number of intermediate clusters which in turn reduces the computational cost, a rule selection strategy is taken to find the best rules based on information propagation and cycle structure. After encoding the dataset using frequency-based encoding such that the consecutive data elements maintain a minimum hamming distance in encoded form, our proposed clustering algorithm iterates over three stages to finally cluster the data elements into the desired number of clusters given by user. This algorithm can be applied to various fields, including healthcare, sports, chemical research, agriculture, etc. When verified over standard benchmark datasets with various performance metrics, our algorithm is at par with the existing algorithms with quadratic time complexity.
翻译:暂无翻译