Deep neural network (DNN)-based algorithms are emerging as an important tool for many physical and MAC layer functions in future wireless communication systems, including for large multi-antenna channels. However, training such models typically requires a large dataset of high-dimensional channel measurements, which are very difficult and expensive to obtain. This paper introduces a novel method for generating synthetic wireless channel data using diffusion-based models to produce user-specific channels that accurately reflect real-world wireless environments. Our approach employs a conditional denoising diffusion implicit models (cDDIM) framework, effectively capturing the relationship between user location and multi-antenna channel characteristics. We generate synthetic high fidelity channel samples using user positions as conditional inputs, creating larger augmented datasets to overcome measurement scarcity. The utility of this method is demonstrated through its efficacy in training various downstream tasks such as channel compression and beam alignment. Our approach significantly improves over prior methods, such as adding noise or using generative adversarial networks (GANs), especially in scenarios with limited initial measurements.
翻译:暂无翻译