Mesh watermark embeds secret messages in 3D meshes and decodes the message from watermarked meshes for ownership verification. Current watermarking methods directly hide secret messages in vertex and face sets of meshes. However, mesh is a discrete representation that uses vertex and face sets to describe a continuous signal, which can be discretized in other discrete representations with different vertex and face sets. This raises the question of whether the watermark can still be verified on the different discrete representations of the watermarked mesh. We conduct this research in an attack-then-defense manner by proposing a novel function space mesh watermark removal attack FuncEvade and then mitigating it through function space mesh watermarking FuncMark. In detail, FuncEvade generates a different discrete representation of a watermarked mesh by extracting it from the signed distance function of the watermarked mesh. We observe that the generated mesh can evade ALL previous watermarking methods. FuncMark mitigates FuncEvade by watermarking signed distance function through message-guided deformation. Such deformation can survive isosurfacing and thus be inherited by the extracted meshes for further watermark decoding. Extensive experiments demonstrate that FuncEvade achieves 100% evasion rate among all previous watermarking methods while achieving only 0.3% evasion rate on FuncMark. Besides, our FuncMark performs similarly on other metrics compared to state-of-the-art mesh watermarking methods.


翻译:暂无翻译

1
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员