Missing data are often dealt with multiple imputation. A crucial part of the multiple imputation process is selecting sensible models to generate plausible values for incomplete data. A method based on posterior predictive checking is proposed to diagnose imputation models based on posterior predictive checking. To assess the congeniality of imputation models, the proposed diagnostic method compares the observed data with their replicates generated under corresponding posterior predictive distributions. If the imputation model is congenial with the substantive model, the observed data are expected to be located in the centre of corresponding predictive posterior distributions. Simulation and application are designed to investigate the proposed diagnostic method for parametric and semi-parametric imputation approaches, continuous and discrete incomplete variables, univariate and multivariate missingness patterns. The results show the validity of the proposed diagnostic method.
翻译:缺少的数据往往涉及多重估算。多重估算过程的一个关键部分是选择明智的模型,为不完整的数据产生可信的值。根据事后预测检查,建议采用基于事后预测检查的方法来诊断估算模型。为了评估估算模型的相似性,拟议的诊断方法将观测到的数据与其在相应的事后预测分布下产生的复制物进行比较。如果估算模型与实质性模型相同,则预计观测到的数据将位于相应的预测后附分布中心。模拟和应用旨在调查拟议的参数和半参数估算方法的诊断方法、连续和离散的不完全变量、单体和多变量缺失模式。结果显示了拟议诊断方法的有效性。