The recently proposed identifiable variational autoencoder (iVAE) framework provides a promising approach for learning latent independent components (ICs). iVAEs use auxiliary covariates to build an identifiable generation structure from covariates to ICs to observations, and the posterior network approximates ICs given observations and covariates. Though the identifiability is appealing, we show that iVAEs could have local minimum solution where observations and the approximated ICs are independent given covariates.-a phenomenon we referred to as the posterior collapse problem of iVAEs. To overcome this problem, we develop a new approach, covariate-informed iVAE (CI-iVAE) by considering a mixture of encoder and posterior distributions in the objective function. In doing so, the objective function prevents the posterior collapse, resulting latent representations that contain more information of the observations. Furthermore, CI-iVAEs extend the original iVAE objective function to a larger class and finds the optimal one among them, thus having tighter evidence lower bounds than the original iVAE. Experiments on simulation datasets, EMNIST, Fashion-MNIST, and a large-scale brain imaging dataset demonstrate the effectiveness of our new method.
翻译:iVAEs使用辅助共变法来建立一个从同化到同化到观测的可识别的生成结构,而后端网络则近似于ICs的观测和同化分布。虽然识别性具有吸引力,但我们表明iVAE可以在当地找到最起码的解决办法,即观测和近似ICs是独立的共化体。 - 我们称之为iVAE的后端崩溃问题的一种现象。为了克服这一问题,我们制定了一种新的办法,即通过考虑在目标功能中将编码器和后端分布混合成一种可识别的复合结构(CI-iVAE),从而在目标功能中考虑将编码器和后端分布混合为ICs。这样,目标功能可以防止后端崩溃,从而产生包含更多观测信息的潜在表现。此外,CI-iVAE将最初的iVAE目标功能扩大到更大的类别,并发现其中最理想的一种现象,因此我们的证据比最初的 iVAE-I-IST(CI-IVAVAE-IG) 模拟模型中大型数据测试法。