Neural Networks (NNs) have been widely {used in supervised learning} due to their ability to model complex nonlinear patterns, often presented in high-dimensional data such as images and text. However, traditional NNs often lack the ability for uncertainty quantification. Bayesian NNs (BNNS) could help measure the uncertainty by considering the distributions of the NN model parameters. Besides, domain knowledge is commonly available and could improve the performance of BNNs if it can be appropriately incorporated. In this work, we propose a novel Posterior-Regularized Bayesian Neural Network (PR-BNN) model by incorporating different types of knowledge constraints, such as the soft and hard constraints, as a posterior regularization term. Furthermore, we propose to combine the augmented Lagrangian method and the existing BNN solvers for efficient inference. The experiments in simulation and two case studies about aviation landing prediction and solar energy output prediction have shown the knowledge constraints and the performance improvement of the proposed model over traditional BNNs without the constraints.


翻译:由于能够建模复杂的非线性模式,传统非线性模式往往以图像和文字等高维数据的形式出现,因此神经网络被广泛使用。然而,传统的非线性网络往往缺乏对不确定性进行量化的能力。Bayesian NNS(BNNS)可以通过考虑非线性模型参数的分布来帮助测量不确定性。此外,域知识通常可用,如果可以适当纳入,则可以改善非线性网络的性能。在这项工作中,我们提议采用一个新的Poseteriter-Recalized Bayesian Neural网络(PR-BNNN)模式,将软性和硬性限制等不同类型的知识限制作为后遗症正规化术语。此外,我们提议将扩大的Lagrangian方法和现有的BNNS解决方案结合起来,以便有效推断。关于航空着陆预测和太阳能产出预测的模拟试验和两个案例研究表明知识限制以及拟议的模型在不受限制的情况下在传统的BNNS上的业绩改进。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月21日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员