This paper discusses a new variant of the Henry Gas Solubility Optimization (HGSO) Algorithm, called Hybrid HGSO (HHGSO). Unlike its predecessor, HHGSO allows multiple clusters serving different individual meta-heuristic algorithms (i.e., with its own defined parameters and local best) to coexist within the same population. Exploiting the dynamic cluster-to-algorithm mapping via penalized and reward model with adaptive switching factor, HHGSO offers a novel approach for meta-heuristic hybridization consisting of Jaya Algorithm, Sooty Tern Optimization Algorithm, Butterfly Optimization Algorithm, and Owl Search Algorithm, respectively. The acquired results from the selected two case studies (i.e., involving team formation problem and combinatorial test suite generation) indicate that the hybridization has notably improved the performance of HGSO and gives superior performance against other competing meta-heuristic and hyper-heuristic algorithms.
翻译:本文件讨论了亨利气溶性最佳化(HGSO)Algorithm(HHGSO)的新变体。与前身不同的是,HHGSO允许多个组群为不同的单体超重算法(即有自己的确定参数和当地最佳参数)而在同一人群中共存。通过采用适应性转换因子的处罚和奖励模型来利用动态集群对藻类的分布图,HGSO为由Jaya Algorithm(Jaya Algorithm)、Sooty Tern Optimation Algorithm(SOwl Search Algorithm)(即涉及团队组建问题和组合测试套件新一代的)组成的超超重超重荷组集成集成提供了一个新办法。从选定的两个案例研究(即涉及团队组建问题和组合测试套件)中获得的结果表明,混合化明显改善了HGSO的性能,并给其他竞合的超重超重荷载超重体算法带来了超重的超重体的超重体混合。