In this letter, a novel framework is proposed for analyzing data offloading in a multi-access edge computing system. Specifically, a two-phase algorithm, is proposed, including two key phases: user association phase} and task offloading phase}. In the first phase, a ruin theory-based approach is developed to obtain the users association considering the users' transmission reliability. Meanwhile, in the second phase, an optimization-based algorithm is used to optimize the data offloading process. In particular, ruin theory is used to manage the user association phase, and a ruin probability-based preference profile is considered to control the priority of proposing users. Here, ruin probability is derived by the surplus buffer space of each edge node at each time slot. Giving the association results, an optimization problem is formulated to optimize the amount of offloaded data aiming at minimizing the energy consumption of users. Simulation results show that the developed solutions guarantee system reliability under a tolerable value of surplus buffer size and minimize the total energy consumption of all users.
翻译:在这封信中,为在多存取边缘计算系统中分析数据卸载情况提出了一个新框架。 具体地说, 提议了一个两阶段算法, 包括两个关键阶段: 用户关联阶段} 和任务卸载阶段}。 在第一阶段, 开发了一个基于废理论的用户协会, 以获得考虑到用户传输可靠性的用户协会。 同时, 在第二阶段, 使用基于优化的算法来优化数据卸载过程。 特别是, 使用废旧理论来管理用户关联阶段, 并且认为一个以概率为基础的偏好剖面来控制推荐用户的优先性。 在这里, 废机概率来自每个边缘节点在每个时段的剩余缓冲空间。 给协会带来结果, 开发一个优化问题来优化卸载数据的数量, 目的是最大限度地减少用户的能源消耗。 模拟结果显示, 开发的解决方案保证了系统可靠性, 保证了超存缓冲规模的可承受价值, 并最大限度地减少所有用户的能源消耗总量。