来源:IJCAI
编辑:DeepRL
-
A Dual Reinforcement Learning Framework for Unsupervised Text Style Transfer: Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao Chang, Xu Sun, Zhifang Sui
-
A Restart-based Rank-1 Evolution Strategy for Reinforcement Learning: Zefeng Chen, Yuren Zhou, Xiao-yu He, Siyu Jiang
-
An Actor-Critic-Attention Mechanism for Deep Reinforcement Learning in Multi-view Environments:Elaheh Barati, Xuewen Chen
-
An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement Learning Agents: Felipe Such, Vashisht Madhavan, Rosanne Liu, Rui Wang, Pablo Samuel Castro, Yulun Li, Jiale Zhi, Ludwig Schubert, Marc G. Bellemare, Jeff Clune, Joel Lehman
-
Automatic Successive Reinforcement Learning with Multiple Auxiliary Rewards: Zhao-Yang Fu, De-Chuan Zhan, Xin-Chun Li, Yi-Xing Lu
-
Autoregressive Policies for Continuous Control Deep Reinforcement Learning:Dmytro Korenkevych, Ashique Rupam Mahmood, Gautham Vasan, James Bergstra
-
Deep Multi-Agent Reinforcement Learning with Discrete-Continuous Hybrid Action Spaces :Haotian Fu, Hongyao Tang, Jianye Hao, Zihan Lei, Yingfeng Chen, Changjie Fan
-
Dynamic Electronic Toll Collection via Multi-Agent Deep Reinforcement Learning with Edge-Based Graph Convolutional Network Representation:Wei Qiu, Haipeng Chen, Bo An
-
Energy-Efficient Slithering Gait Exploration for a Snake-Like Robot Based on Reinforcement Learning: Zhenshan Bing, Christian Lemke, Zhuangyi Jiang, Kai Huang, Alois Knoll
-
Explaining Reinforcement Learning to Mere Mortals: An Empirical Study: Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis, Evan Newman, Jed Irvine, Souti Chattopadhyay, Alan Fern, Margaret Burnett
-
Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space: Zhou Fan, Rui Su, Weinan Zhang, Yong Yu
-
Incremental Learning of Planning Actions in Model-Based Reinforcement Learning: Alvin Ng, Ron Petrick
-
Interactive Reinforcement Learning with Dynamic Reuse of Prior Knowledge from Human/Agent's Demonstration: Zhaodong Wang, Matt Taylor
-
Interactive Teaching Algorithms for Inverse Reinforcement Learning: Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, Adish Singla
-
Large-Scale Home Energy Management Using Entropy-Based Collective Multiagent Deep Reinforcement Learning: Yaodong Yang, Jianye Hao, Yan Zheng, Chao Yu
-
Meta Reinforcement Learning with Task Embedding and Shared Policy: Lin Lan, Zhenguo Li, Xiaohong Guan, Pinghui Wang
-
Metatrace Actor-Critic: Online Step-Size Tuning by Meta-gradient Descent for Reinforcement Learning Control: Kenny Young, Baoxiang Wang, Matthew E. Taylor
-
Playing Card-Based RTS Games with Deep Reinforcement Learning: Tianyu Liu, Zijie Zheng, Hongchang Li, Kaigui Bian, Lingyang Song
-
Playing FPS Games With Environment-Aware Hierarchical Reinforcement Learning: Shihong Song, Jiayi Weng, Hang Su, Dong Yan, Haosheng Zou, Jun Zhu
-
Reinforcement Learning Experience Reuse with Policy Residual Representation: WenJi Zhou, Yang Yu, Yingfeng Chen, Kai Guan, Tangjie Lv, Changjie Fan, Zhi-Hua Zhou
-
Reward Learning for Efficient Reinforcement Learning in Extractive Document Summarisation: Yang Gao, Christian Meyer, Mohsen Mesgar, Iryna Gurevych
-
Sharing Experience in Multitask Reinforcement Learning: Tung-Long Vuong, Do-Van Nguyen, Tai-Long Nguyen, Cong-Minh Bui, Hai-Dang Kieu, Viet-Cuong Ta, Quoc-Long Tran, Thanh-Ha Le
-
SlateQ: A Tractable Decomposition for Reinforcement Learning with Recommendation Sets: Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu, Heng-Tze Cheng, Tushar Chandra, Craig Boutilier
-
Soft Policy Gradient Method for Maximum Entropy Deep Reinforcement Learning: Wenjie Shi, Shiji Song, Cheng Wu
-
Solving Continual Combinatorial Selection via Deep Reinforcement Learning: HyungSeok Song, Hyeryung Jang, Hai H. Tran, Se-eun Yoon, Kyunghwan Son, Donggyu Yun, Hyoju Chung, Yung Yi
-
Successor Options: An Option Discovery Framework for Reinforcement Learning: Rahul Ramesh, Manan Tomar, Balaraman Ravindran
-
Transfer of Temporal Logic Formulas in Reinforcement Learning: Zhe Xu, Ufuk Topcu
-
Using Natural Language for Reward Shaping in Reinforcement Learning: Prasoon Goyal, Scott Niekum, Raymond Mooney
-
Value Function Transfer for Deep Multi-Agent Reinforcement Learning Based on N-Step Returns: Yong Liu, Yujing Hu, Yang Gao, Yingfeng Chen, Changjie Fan
-
Failure-Scenario Maker for Rule-Based Agent using Multi-agent Adversarial Reinforcement Learning and its Application to Autonomous Driving: Akifumi Wachi
-
LTL and Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning: Alberto Camacho, Rodrigo Toro Icarte, Toryn Q. Klassen, Richard Valenzano, Sheila McIlraith
-
A Survey of Reinforcement Learning Informed by Natural Language: Jelena Luketina↵, Nantas Nardelli, Gregory Farquhar, Jakob Foerster, Jacob Andreas, Edward Grefenstett, Shimon Whiteson, Tim Rocktäschel
-
Leveraging Human Guidance for Deep Reinforcement Learning Tasks: Ruohan Zhang, Faraz Torabi, Lin Guan, Dana H. Ballard, Peter Stone
-
CRSRL: Customer Routing System using Reinforcement Learning: Chong Long, Zining Liu, Xiaolu Lu, Zehong Hu, Yafang Wang
-
Deep Reinforcement Learning for Ride-sharing Dispatching and Repositioning: Zhiwei (Tony) Qin, Xiaocheng Tang, Yan Jiao, Fan Zhang, Chenxi Wang
-
Learning Deep Decentralized Policy Network by Collective Rewards for Real-Time Combat Game: Peixi Peng, Junliang Xing, Lili Cao, Lisen Mu, Chang Huang
-
Monte Carlo Tree Search for Policy Optimization: Xiaobai Ma, Katherine Driggs-Campbell, Zongzhang Zhang, Mykel J. Kochenderfer
-
On Principled Entropy Exploration in Policy Optimization: Jincheng Mei, Chenjun Xiao, Ruitong Huang, Dale Schuurmans, Martin Müller
-
Recurrent Existence Determination Through Policy Optimization: Baoxiang Wang
-
Diversity-Inducing Policy Gradient: Using Maximum Mean Discrepancy to Find a Set of Diverse Policies: Muhammad Masood, Finale Doshi-Velez
-
A probabilistic logic for resource-bounded multi-agent systems: Hoang Nga Nguyen, Abdur Rakib
-
A Value-based Trust Assessment Model for Multi-agent Systems: Kinzang Chhogyal, Abhaya Nayak, Aditya Ghose, Hoa Khanh Dam
-
Branch-and-Cut-and-Price for Multi-Agent Pathfinding: Edward Lam, Pierre Le Bodic, Daniel Harabor, Peter J. Stuckey
-
Decidability of Model Checking Multi-Agent Systems with Regular Expressions against Epistemic HS Specifications: Jakub Michaliszyn, Piotr Witkowski
-
Improved Heuristics for Multi-Agent Path Finding with Conflict-Based Search: Jiaoyang Li, Eli Boyarski, Ariel Felner, Hang Ma, Sven Koenig
-
Integrating Decision Sharing with Prediction in Decentralized Planning for Multi-Agent Coordination under Uncertainty: Minglong Li, Wenjing Yang, Zhongxuan Cai, Shaowu Yang, Ji Wang
-
Multi-agent Attentional Activity Recognition: Kaixuan Chen, Lina Yao, Dalin Zhang, Bin Guo, Zhiwen Yu
-
Multi-Agent Pathfinding with Continuous Time: Anton Andreychuk, Konstantin Yakovlev, Dor Atzmon, Roni Stern
-
Priority Inheritance with Backtracking for Iterative Multi-agent Path Finding: Keisuke Okumura, Manao Machida, Xavier Défago, Yasumasa Tamura
-
The Interplay of Emotions and Norms in Multiagent Systems: Anup K. Kalia, Nirav Ajmeri, Kevin S. Chan, Jin-Hee Cho, Sibel Adali, Munindar Singh
-
Unifying Search-based and Compilation-based Approaches to Multi-agent Path Finding through Satisfiability Modulo Theories: Pavel Surynek
-
Implicitly Coordinated Multi-Agent Path Finding under Destination Uncertainty: Success Guarantees and Computational Complexity (Extended Abstract): Bernhard Nebel, Thomas Bolander, Thorsten Engesser, Robert Mattmüller
-
Embodied Conversational AI Agents in a Multi-modal Multi-agent Competitive Dialogue: Rahul Divekar, Xiangyang Mou, Lisha Chen, Maíra Gatti de Bayser, Melina Alberio Guerra, Hui Su
-
Multi-Agent Path Finding on Ozobots: Roman Barták, Ivan Krasičenko, Jiří Švancara
-
Multi-Agent Visualization for Explaining Federated Learning: Xiguang Wei, Quan Li, Yang Liu, Han Yu, Tianjian Chen, Qiang Yang
-
Automated Machine Learning with Monte-Carlo Tree Search: Herilalaina Rakotoarison, Marc Schoenauer, Michele Sebag
-
Influence of State-Variable Constraints on Partially Observable Monte Carlo Planning: Alberto Castellini, Georgios Chalkiadakis, Alessandro Farinelli
-
Multiple Policy Value Monte Carlo Tree Search: Li-Cheng Lan, Wei Li, Ting han Wei, I-Chen Wu
-
Subgoal-Based Temporal Abstraction in Monte-Carlo Tree Search: Thomas Gabor, Jan Peter, Thomy Phan, Christian Meyer, Claudia Linnhoff-Popien
-
A Convergence Analysis of Distributed SGD with Communication-Efficient Gradient Sparsification: Shaohuai Shi, Kaiyong Zhao, Qiang Wang, Zhenheng Tang, Xiaowen Chu
-
AsymDPOP: Complete Inference for Asymmetric Distributed Constraint Optimization Problems: Yanchen Deng, Ziyu Chen, Dingding Chen, Wenxin Zhang, Xingqiong Jiang
-
Distributed Collaborative Feature Selection Based on Intermediate Representation: Xiucai Ye, Hongmin Li, Akira Imakura, Tetsuya Sakurai
-
FABA: An Algorithm for Fast Aggregation against Byzantine Attacks in Distributed Neural Networks: Qi Xia, Zeyi Tao, Zijiang Hao, Qun Li
-
Faster Distributed Deep Net Training: Computation and Communication Decoupled Stochastic Gradient Descent: Shuheng Shen, Linli Xu, Jingchang Liu, Xianfeng Liang, Yifei Cheng
-
Fully Distributed Bayesian Optimization with Stochastic Policies: Javier Garcia-Barcos, Ruben Martinez-Cantin
Github链接
https://github.com/NeuronDance/DeepRL/tree/master/DRL-ConferencePaper/IJCAI
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询!
点击“
阅读原文
”,了解使用
专知
,查看获取5000+AI主题知识资源