Reconfigurable morphing surfaces provide new opportunities for advanced human-machine interfaces and bio-inspired robotics. Morphing into arbitrary surfaces on demand requires a device with a sufficiently large number of actuators and an inverse control strategy that can calculate the actuator stimulation necessary to achieve a target surface. The programmability of a morphing surface can be improved by increasing the number of independent actuators, but this increases the complexity of the control system. Thus, developing compact and efficient control interfaces and control algorithms is a crucial knowledge gap for the adoption of morphing surfaces in broad applications. In this work, we describe a passively addressed robotic morphing surface (PARMS) composed of matrix-arranged ionic actuators. To reduce the complexity of the physical control interface, we introduce passive matrix addressing. Matrix addressing allows the control of independent actuators using only 2N control inputs, which is significantly lower than control inputs required for traditional direct addressing. Our control algorithm is based on machine learning using finite element simulations as the training data. This machine learning approach allows both forward and inverse control with high precision in real time. Inverse control demonstrations show that the PARMS can dynamically morph into arbitrary pre-defined surfaces on demand. These innovations in actuator matrix control may enable future implementation of PARMS in wearables, haptics, and augmented reality/virtual reality (AR/VR).
翻译:可重新配置的变形表面为先进的人体机器界面和生物激励机器人提供了新的机会。在需求条件下进入任意表面需要足够多的驱动器和反向控制战略,以计算达到目标表面所必需的动画刺激。变形表面的可编程性可以通过增加独立动作器的数量而得到改善,但这就增加了控制系统的复杂性。因此,开发紧凑和有效的控制界面和控制算法是广泛应用变形表面的关键知识差距。在这项工作中,我们描述一个由磁盘-测序音动画器组成的被动处理机器人变形表面(PARMS),由矩阵-测序音音音音动画器组成。为降低物理控制界面的复杂性,我们引入被动矩阵处理方法,仅使用2N控制输入器就可以控制独立动作器,这大大低于传统直接处理所需的控制投入。我们的控制算法是使用固定要素模拟进行机学,作为培训数据。在实际的正态-正态-正态变形变形操作中,这种机器学习方法既允许前和反向的机器人变形表面控制,又允许以高精确的变形的变形变形变形变形变形系统。在实际的MA机前的变式压中,可以使变动的变压式的变压式的变压式的变压式的变压式的压式的变压式的变压式的变压式的变压式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变制。</s>