Access to raw network traffic data is essential for many computer networking tasks, from traffic modeling to performance evaluation. Unfortunately, this data is scarce due to high collection costs and governance rules. Previous efforts explore this challenge by generating synthetic network data, but fail to reliably handle multi-flow sessions, struggle to reason about stateful communication in moderate to long-duration network sessions, and lack robust evaluations tied to real-world utility. We propose a new method based on state-space models called NetSSM that generates raw network traffic at the packet-level granularity. Our approach captures interactions between multiple, interleaved flows -- an objective unexplored in prior work -- and effectively reasons about flow-state in sessions to capture traffic characteristics. NetSSM accomplishes this by learning from and producing traces 8x and 78x longer than existing transformer-based approaches. Evaluation results show that our method generates high-fidelity traces that outperform prior efforts in existing benchmarks. We also find that NetSSM's traces have high semantic similarity to real network data regarding compliance with standard protocol requirements and flow and session-level traffic characteristics.
翻译:暂无翻译