Deep convolutional neural networks accuracy is heavily impacted by rotations of the input data. In this paper, we propose a convolutional predictor that is invariant to rotations in the input. This architecture is capable of predicting the angular orientation without angle-annotated data. Furthermore, the predictor maps continuously the random rotation of the input to a circular space of the prediction. For this purpose, we use the roto-translation properties existing in the Scattering Transform Networks with a series of 3D Convolutions. We validate the results by training with upright and randomly rotated samples. This allows further applications of this work on fields like automatic re-orientation of randomly oriented datasets.
翻译:深相神经网络的准确性受到输入数据的旋转的严重影响。 在本文中, 我们提议一个变动预测器, 它与输入的旋转不相容。 这个结构可以预测角向方向, 没有角度附加数据 。 此外, 预测器将输入的随机旋转持续到预测的循环空间 。 为此, 我们使用 3D 序列 的 散射变换 网络 中存在的转译属性 。 我们用直向和随机旋转的样本来验证结果 。 这样可以让这项工作在字段中进一步应用, 比如自动重定向随机的数据集 。