We present a PDE-based framework that generalizes Group equivariant Convolutional Neural Networks (G-CNNs). In this framework, a network layer is seen as a set of PDE-solvers where geometrically meaningful PDE-coefficients become the layer's trainable weights. Formulating our PDEs on homogeneous spaces allows these networks to be designed with built-in symmetries such as rotation in addition to the standard translation equivariance of CNNs. Having all the desired symmetries included in the design obviates the need to include them by means of costly techniques such as data augmentation. We will discuss our PDE-based G-CNNs (PDE-G-CNNs) in a general homogeneous space setting while also going into the specifics of our primary case of interest: roto-translation equivariance. We solve the PDE of interest by a combination of linear group convolutions and non-linear morphological group convolutions with analytic kernel approximations that we underpin with formal theorems. Our kernel approximations allow for fast GPU-implementation of the PDE-solvers, we release our implementation with this article. Just like for linear convolution a morphological convolution is specified by a kernel that we train in our PDE-G-CNNs. In PDE-G-CNNs we do not use non-linearities such as max/min-pooling and ReLUs as they are already subsumed by morphological convolutions. We present a set of experiments to demonstrate the strength of the proposed PDE-G-CNNs in increasing the performance of deep learning based imaging applications with far fewer parameters than traditional CNNs.


翻译:我们提出了一个基于 PDE 的框架, 将组 NN- CNN 的变异性神经网络( G- CNN ) 普遍化。 在这个框架中, 网络层被视为一套 PDE- 溶解器, 使具有几何意义的 PDE 系数成为该层可训练的重量。 在同质空间上构建我们的 PDE 格式, 使得这些网络能够以内在的对称来设计, 例如, 除了CNN 的标准翻译等同性。 由于设计中包含所有想要的对称性, 不需要通过数据增强等昂贵的技术来包括它们。 我们将讨论基于 PDE G- 的 G- CPN (PDE- G- G- CNN) 的 G- 以几何为基的 G- G- GN 参数, 同时进入我们主要感兴趣的具体案例: 恒定的变异性。 我们通过线性组变异性变异和非线组的变异性组合, We- 变形组的变异性与我们所支持的正态变异性变异性变异性变异性变异性变现, 我们的变异性变变变变的变的变变变变变变变的变现, 的变变变变变变的变变变变变的变的变变的变性变的变的变的变变现, 的变的变变的变的变变变变变变变现性变的变的变为我们变的变的变的变, 的变的变, 的变的变的变变现, 的变变的变变变的变的变变变变的变的变现的变的变变变变变变变变变变变的变的变的变的变, 的变的变的变的变的变的变变变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变。的变的变的变的变的变的变的变, 的变的变的变的变, 的变的变变变的变变变的变变变的变的变的变的变的变的变的变

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
33+阅读 · 2020年4月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2021年2月19日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
3+阅读 · 2018年2月11日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Top
微信扫码咨询专知VIP会员