We consider a PDE approach to numerically solving the optimal transportation problem on the sphere. We focus on both the traditional squared geodesic cost and a logarithmic cost, which arises in the reflector antenna design problem. At each point on the sphere, we replace the surface PDE with a generalized Monge-Amp\`ere type equation posed on the tangent plane using normal coordinates. The resulting nonlinear PDE can then be approximated by any consistent, monotone scheme for generalized Monge-Amp\`ere type equations on the plane. By augmenting this discretization with an additional term that constrains the solution gradient, we obtain a strong form of stability. A modification of the Barles-Souganidis convergence framework then establishes convergence to the mean-zero solution of the original PDE.
翻译:我们考虑用PDE方法从数字上解决球体上的最佳运输问题。 我们既关注传统的平方大地测量成本,也关注反射天线设计问题中产生的对数成本。 在每一点上,我们用正常坐标将平面PDE替换为平面平面上的通用蒙-安-安-安-安-埃方方方程式。 由此产生的非线性PDE可以被任何一致的、单一的平面通用蒙-安-安-安-埃方程式方案所近似。 通过扩大这一离散性,加上一个限制溶液梯度的附加术语,我们获得了一种强大的稳定性。 修改巴列斯-苏格尼迪斯的趋同框架之后, 就可以与原PDE的平均值- 零解决方案取得趋同。