Graph Neural Networks (GNNs) have been successfully applied to many real-world static graphs. However, the success of static graphs has not fully translated to dynamic graphs due to the limitations in model design, evaluation settings, and training strategies. Concretely, existing dynamic GNNs do not incorporate state-of-the-art designs from static GNNs, which limits their performance. Current evaluation settings for dynamic GNNs do not fully reflect the evolving nature of dynamic graphs. Finally, commonly used training methods for dynamic GNNs are not scalable. Here we propose ROLAND, an effective graph representation learning framework for real-world dynamic graphs. At its core, the ROLAND framework can help researchers easily repurpose any static GNN to dynamic graphs. Our insight is to view the node embeddings at different GNN layers as hierarchical node states and then recurrently update them over time. We then introduce a live-update evaluation setting for dynamic graphs that mimics real-world use cases, where GNNs are making predictions and being updated on a rolling basis. Finally, we propose a scalable and efficient training approach for dynamic GNNs via incremental training and meta-learning. We conduct experiments over eight different dynamic graph datasets on future link prediction tasks. Models built using the ROLAND framework achieve on average 62.7% relative mean reciprocal rank (MRR) improvement over state-of-the-art baselines under the standard evaluation settings on three datasets. We find state-of-the-art baselines experience out-of-memory errors for larger datasets, while ROLAND can easily scale to dynamic graphs with 56 million edges. After re-implementing these baselines using the ROLAND training strategy, ROLAND models still achieve on average 15.5% relative MRR improvement over the baselines.
翻译:神经网图( GNNs) 已成功应用于许多真实世界的静态图形。 然而, 静态图形的成功尚未完全转化为动态图表, 原因是模型设计、 评价设置和培训战略的局限性。 具体地说, 现有的动态 GNNNs并不包含静态 GNNs 的最新设计, 从而限制其性能。 动态 GNNs 当前的评价设置并不充分反映动态图表的演变性质。 最后, 动态 GNNs 常用的培训方法无法轻易缩放。 我们在这里建议 ROLAND, 一个有效的图形代表学习框架, 用于真实世界的动态图表。 在核心方面, ROLAND 框架可以帮助研究人员很容易地重新定位任何静态 GNNN到动态图表。 我们的洞察是将GNNNN 层的节点嵌入为等级节点, 并随后经常更新这些动态图形。 然后, 我们推出一个最新的动态图表评估设置, GNNPs 将预测和不断更新的更新的滚动的图像。 最后, 我们用一个可升级的模型和高效的模型模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的模型的