This paper takes the first step towards a reactive, hierarchical multi-robot task allocation and planning framework given a global Linear Temporal Logic specification. The capabilities of both quadrupedal and wheeled robots are leveraged via a heterogeneous team to accomplish a variety of navigation and delivery tasks. However, when deployed in the real world, all robots can be susceptible to different types of disturbances, including but not limited to locomotion failures, human interventions, and obstructions from the environment. To address these disturbances, we propose task-level local and global reallocation strategies to efficiently generate updated action-state sequences online while guaranteeing the completion of the original task. These task reallocation approaches eliminate reconstructing the entire plan or resynthesizing a new task. To integrate the task planner with low-level inputs, a Behavior Tree execution layer monitors different types of disturbances and employs the reallocation methods to make corresponding recovery strategies. To evaluate this planning framework, dynamic simulations are conducted in a realistic hospital environment with a heterogeneous robot team consisting of quadrupeds and wheeled robots for delivery tasks.
翻译:本文迈出了第一步,根据全球线性时空逻辑的规格,朝着反应性、等级性多机器人任务分配和规划框架迈出了第一步。四重机器人和轮式机器人的能力都通过一个多样化的团队加以利用,以完成各种导航和交付任务。然而,如果在现实世界中部署,所有机器人都可能受到不同类型的干扰,包括但不限于行动失灵、人类干预和环境障碍。为了应对这些扰动,我们提出了任务级的地方和全球重新分配战略,以便在网上高效生成更新的行动状态序列,同时保证完成最初的任务。这些任务重新分配方法消除了整个计划的重建或重新组合一项新任务。为了将任务规划员与低层次的投入结合起来,一个“贝哈维尔树”执行层监测不同类型的扰动,并采用重新分配方法制定相应的恢复战略。为了评估这一规划框架,在现实的医院环境中进行了动态模拟,由四重的机器人和轮式机器人组成一个交付任务的混合机器人小组。