Time delays in communication networks are one of the main concerns in deploying robots with computation boards on the edge. This article proposes a multi-stage Nonlinear Model Predictive Control (NMPC) that is capable of handling varying network-induced time delays for establishing a control framework being able to guarantee collision-free Micro Aerial Vehicles (MAVs) navigation. This study introduces a novel approach that considers different sampling times by a tree of discretization scenarios contrary to the existing typical multi-stage NMPC where system uncertainties are modeled by a tree of scenarios. Additionally, the proposed method considers adaptive weights for the multi-stage NMPC scenarios based on the probability of time delays in the communication link. As a result of the multi-stage NMPC, the obtained optimal control action is valid for multiple sampling times. Finally, the overall effectiveness of the proposed novel control framework is demonstrated in various tests and different simulation environments.
翻译:通信网络中的时间延误是部署带有计算板的机器人在边缘的主要关注问题之一;本条建议采用多阶段非线性模型预测控制(NMPC),能够处理不同阶段非线性模型预测控制(NMPC),这种多阶段非线性模型预测控制(NMPC)能够处理不同的网络引起的时间延误,以建立控制框架,能够保证无碰撞微型飞行器(MAVs)导航;本项研究采用了一种新颖的方法,将不同的采样时间考虑在离散情景树上的不同采样时间,这与现有的典型的多阶段NMPC不同,即系统不确定性以一棵情景树为模型。此外,拟议方法根据通信链路延迟的可能性考虑多阶段NMPC情景的适应权重。由于多阶段NMPC的结果,获得的最佳控制行动对多个采样时间有效。最后,在各种测试和不同的模拟环境中,展示了拟议的新控制框架的总体有效性。