We consider the expander routing problem formulated by Ghaffari, Kuhn, and Su (PODC 2017), where the goal is to route all the tokens to their destinations given that each vertex is the source and the destination of at most $\deg(v)$ tokens. They developed $\textit{randomized algorithms}$ that solve this problem in $\text{poly}(\phi^{-1}) \cdot 2^{O(\sqrt{\log n \log \log n})}$ rounds in the $\textsf{CONGEST}$ model, where $\phi$ is the conductance of the graph. Later, Ghaffari and Li (DISC 2018) gave an improved algorithm. However, both algorithms are randomized, which means that all the resulting applications are also randomized. Recently, Chang and Saranurak (FOCS 2020) gave a deterministic algorithm that solves an expander routing instance in $2^{O(\log^{2/3} n \cdot \log^{1/3} \log n)}$ rounds. The deterministic algorithm is less efficient and does not allow preprocessing/query tradeoffs, which precludes the de-randomization of algorithms that require this feature, such as the $k$-clique enumeration algorithm in general graphs. The main contribution of our work is a new deterministic expander routing algorithm that not only matches the randomized bound of [GKS 2017] but also allows preprocessing/query tradeoffs. Our algorithm solves a single instance of routing query in $2^{{O}(\sqrt{\log n \cdot \log \log n})}$ rounds. Our algorithm achieves the following preprocessing and query tradeoffs: For $0 < \epsilon < 1$, we can answer every routing query in $\log^{O(1/\epsilon)} n$ rounds at the cost of a $(n^{O(\epsilon)} + \log^{O(1/\epsilon)} n)$-round preprocessing procedure. Combining this with the approach of Censor-Hillel, Leitersdorf, and Vulakh (PODC 2022), we obtain a near-optimal $\tilde{O}(n^{1-2/k})$-round deterministic algorithm for $k$-clique enumeration in general graphs, improving the previous state-of-the-art $n^{1-2/k+o(1)}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

PODC:ACM Symposium on Principles of Distributed Computing。 Explanation:分布式计算原理学术讨论会。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/podc/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
17+阅读 · 2023年12月4日
Arxiv
14+阅读 · 2023年8月7日
Arxiv
12+阅读 · 2021年6月21日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
30+阅读 · 2019年3月13日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
72+阅读 · 2016年11月26日
相关论文
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员