We introduce a similarity function on formulae of signal temporal logic (STL). It comes in the form of a kernel function, well known in machine learning as a conceptually and computationally efficient tool. The corresponding kernel trick allows us to circumvent the complicated process of feature extraction, i.e. the (typically manual) effort to identify the decisive properties of formulae so that learning can be applied. We demonstrate this consequence and its advantages on the task of predicting (quantitative) satisfaction of STL formulae on stochastic processes: Using our kernel and the kernel trick, we learn (i) computationally efficiently (ii) a practically precise predictor of satisfaction, (iii) avoiding the difficult task of finding a way to explicitly turn formulae into vectors of numbers in a sensible way. We back the high precision we have achieved in the experiments by a theoretically sound PAC guarantee, ensuring our procedure efficiently delivers a close-to-optimal predictor.
翻译:我们引入了信号时间逻辑公式的相似功能。 它以内核函数的形式出现,在机器学习中作为概念和计算效率高的工具而广为人知。 相应的内核把戏让我们绕过复杂的地貌提取过程, 即( 典型的手动)努力确定公式的决定性特性, 以便应用学习。 我们展示了这一结果及其在预测STL公式对随机过程的满意度( 定量) 的任务方面的优势: 我们使用内核和内核把戏, 我们学会了 (一) 高效地计算(二) 一个几乎精确的满意度预测器, (三) 避免寻找一种方法, 以合理的方式将公式明确转化为数字矢量的艰难任务。 我们背弃了我们在实验中通过理论健全的PAC保证实现的高度精确性, 确保我们的程序高效地提供接近最优化的预测器。