We investigate the properties of a family of polytopes that naturally arise in connection with a problem in distributed data storage, namely service rate region polytopes. The service rate region of a distributed coded system describes the data access requests that the underlying system can support. In this paper, we study the polytope structure of the service rate region with the primary goal of describing its geometric shape and properties. We achieve so by introducing various structural parameters of the service rate region and establishing upper and lower bounds for them. The techniques we apply in this paper range from coding theory to optimization. One of our main results shows that every rational point of the service rate region has a so-called rational allocation, answering an open question in the research area.
翻译:我们调查了在分布式数据存储问题(即服务率区域多面体)中自然产生的多面体家族的属性。分布式编码系统的服务率区域描述了基础系统能够支持的数据访问请求。我们在本文件中研究了服务率区域的多面体结构,主要目标是描述其几何形状和属性。我们通过引入服务率区域的各种结构参数并为它们设定上下界来实现这一目标。我们在本文中应用的技术从编码理论到优化。我们的主要结果之一显示,服务率区域的每一个合理点都有所谓的合理分配,在研究领域回答一个开放的问题。</s>