Recent substantial advances of molecular targeted oncology drug development is requiring new paradigms for early-phase clinical trial methodologies to enable us to evaluate efficacy of several subtypes simultaneously and efficiently. The concept of the basket trial is getting of much attention to realize this requirement borrowing information across subtypes, which are called baskets. Bayesian approach is a natural approach to this end and indeed the majority of the existing proposals relies on it. On the other hand, it required complicated modeling and may not necessarily control the type 1 error probabilities at the nominal level. In this paper, we develop a purely frequentist approach for basket trials based on one-sample Mantel-Haenszel procedure relying on a very simple idea for borrowing information under the common treatment effect assumption over baskets. We show that the proposed estimator is consistent under two limiting models of the large strata and sparse data limiting models (dually consistent) and propose dually consistent variance estimators. The proposed Mantel-Haenszel estimators are interpretable even if the common treatment assumptions are violated. Then, we can design basket trials in a confirmatory matter. We also propose an information criterion approach to identify effective subclass of baskets.


翻译:最近分子针对肿瘤药物发展的显著进展要求早期临床试验方法的新模式,以便我们能够同时有效地评价若干子类型的效力。篮子试验的概念正在引起人们的极大关注,以实现这一要求,在被称为篮子的子类型中借用信息。巴伊西亚方法是实现这一目标的一种自然方法,而事实上大多数现有提案都依赖这一方法。另一方面,它需要复杂的建模,可能不一定在名义上控制第1类错误概率。在本文中,我们为篮子试验制定了一种纯粹的常见方法,其基础是单模曼特尔-汉斯策尔-汉斯策尔,其依据是在篮子的共同治疗效果假设下借用信息的非常简单的想法。我们表明,拟议的估算方法在大层和稀少数据限制模式的两个限制模式下是一致的(非常一致的),并提出了双重一致的差异估计。提议的Mantel-Haenszel估算器即使在共同治疗假设被违反的情况下也是可以解释的。然后,我们可以用一个非常简单的想法来设计篮子试验。我们还提出一个确定一个确认性事项的子类标准。我们还提议了一个资料标准。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员