Making causal inferences from observational studies can be challenging when confounders are missing not at random. In such cases, identifying causal effects is often not guaranteed. Motivated by a real example, we consider a treatment-independent missingness assumption under which we establish the identification of causal effects when confounders are missing not at random. We propose a weighted estimating equation (WEE) approach for estimating model parameters and introduce three estimators for the average causal effect, based on regression, propensity score weighting, and doubly robust estimation. We evaluate the performance of these estimators through simulations, and provide a real data analysis to illustrate our proposed method.
翻译:在混淆因素缺失不是随机的情况下,从观察研究中进行因果推断可能具有挑战性。在这种情况下,通常不能保证识别因果效应。受一个真实示例的启发,我们考虑在独立于治疗的缺失假设下,当混淆因素缺失不是随机的时候,我们确立了因果效应的识别。我们提出了一种基于加权估计方程(WEE)的方法来估计模型参数,并介绍了三种基于回归、倾向得分加权和双重鲁棒估计的平均因果效应的估计器。我们通过模拟评估了这些估计器的性能,并提供了一个实际数据分析来说明我们的提议方法。