Multi-stage serverless applications, i.e., workflows with many computation and I/O stages, are becoming increasingly representative of FaaS platforms. Despite their advantages in terms of fine-grained scalability and modular development, these applications are subject to suboptimal performance, resource inefficiency, and high costs to a larger degree than previous simple serverless functions. We present Aquatope, a QoS-and-uncertainty-aware resource scheduler for end-to-end serverless workflows that takes into account the inherent uncertainty present in FaaS platforms, and improves performance predictability and resource efficiency. Aquatope uses a set of scalable and validated Bayesian models to create pre-warmed containers ahead of function invocations, and to allocate appropriate resources at function granularity to meet a complex workflow's end-to-end QoS, while minimizing resource cost. Across a diverse set of analytics and interactive multi-stage serverless workloads, Aquatope significantly outperforms prior systems, reducing QoS violations by 5x, and cost by 34% on average and up to 52% compared to other QoS-meeting methods.


翻译:没有服务器的多阶段应用程序,即具有多种计算和I/O阶段的工作流程,正日益代表FaaS平台。尽管这些应用程序在微缩缩缩缩缩缩和模块开发方面具有优势,但这些应用程序具有低于最佳性能、资源效率低下和高成本的程度高于以往的简单服务器无功能。我们为终端到终端服务器的无服务器工作流程提供Aquatope(Qos-S和不确定性能)资源调度程序,该程序考虑到FaaaS平台的内在不确定性,并提高性能可预测性和资源效率。Aqutope使用一套可缩放和经过验证的Bayesian模型,在工作前创建预先装备的集装箱,并在功能粒子上分配适当资源,以满足复杂的工作流程端到端的QoS,同时最大限度地减少资源成本。在一系列多种多样的分析性和互动式多级服务器工作量中,Aquotope大大超越了以前的系统,使QoS的违规率减少5x,而成本为34%,与其他方法相比,将QS的违规率降低到52%。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Phase-aware Speech Enhancement with Deep Complex U-Net
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员