This work proposes a novel framework to dynamically and effectively manage and allocate different types of resources for Metaverse applications, which are forecasted to demand massive resources of various types that have never been seen before. Specifically, by studying functions of Metaverse applications, we first propose an effective solution to divide applications into groups, namely MetaInstances, where common functions can be shared among applications to enhance resource usage efficiency. Then, to capture the real-time, dynamic, and uncertain characteristics of request arrival and application departure processes, we develop a semi-Markov decision process-based framework and propose an intelligent algorithm that can gradually learn the optimal admission policy to maximize the revenue and resource usage efficiency for the Metaverse service provider and at the same time enhance the Quality-of-Service for Metaverse users. Extensive simulation results show that our proposed approach can achieve up to 120% greater revenue for the Metaverse service providers and up to 178.9% higher acceptance probability for Metaverse application requests than those of other baselines.
翻译:这项工作提出了一个新的框架,用于动态和有效地管理和分配不同种类的资源,用于Metevice应用程序,预测这些应用程序需要大量以前从未见过的各类资源。具体地说,通过研究Metoveve应用程序的功能,我们首先提出一种有效的解决办法,将应用程序分成若干组,即MetaInstance系统,在应用中可以共享共同功能,以提高资源使用效率。然后,为了捕捉申请抵达和应用程序离开过程的实时、动态和不确定特点,我们制定了一个半Markov决定程序框架,并提出了一个智能算法,可以逐步学习最佳接纳政策,最大限度地提高Metovvers服务提供商的收入和资源使用效率,同时提高Metove用户的服务质量。广泛的模拟结果表明,我们拟议的方法可以使Metove服务供应商获得高达120%的收入,使Metove应用请求的接受概率比其他基线高178.9%。</s>