In this paper, we study the robust optimal investment and risk control problem for an insurer who owns the insider information about the financial market and the insurance market under model uncertainty. Both financial risky asset process and insurance risk process are assumed to be very general jump diffusion processes. The insider information is of the most general form rather than the initial enlargement type. We use the theory of forward integrals to give the first half characterization of the robust optimal strategy and transform the anticipating stochastic differential game problem into the nonanticipative stochastic differential game problem. Then we adopt the stochastic maximum principle to obtain the total characterization of the robust strategy. We discuss the two typical situations when the insurer is `small' and `large' by Malliavin calculus. For the `small' insurer, we obtain the closed-form solution in the continuous case and the half closed-form solution in the case with jumps. For the `large' insurer, we reduce the problem to the quadratic backward stochastic differential equation (BSDE) and obtain the closed-form solution in the continuous case without model uncertainty. We discuss some impacts of the model uncertainty, insider information and the `large' insurer on the optimal strategy.
翻译:在本文中,我们研究对拥有金融市场和保险市场内部信息且具有模型不确定性的保险人来说,稳健的最佳投资和风险控制问题。金融风险资产流程和保险风险流程被假定为非常普遍的跳跃扩散过程。内部信息的形式最为笼统,而不是最初的扩大类型。我们使用前方整体信息理论,对稳健的最佳战略进行前半部分定性,并将预期的随机差分游戏问题转换为非对应性随机差分游戏问题。然后,我们采用随机最大原则,以获得稳健战略的全面定性。我们讨论两种典型情况,即保险人“小”和“大”由Malliavin Callculus提供。对于“小”保险人来说,我们在连续案件中获得封闭式解决方案,在案例中以跳跃方式获得半封闭式解决方案。对于“大”保险人来说,我们将问题降低到二次后方位差异方程方程式(BSDE),并在连续案件中获得“小”的封闭式解决方案,而没有模型不确定性。我们讨论“内部”对最佳模式影响。我们讨论“最佳保险战略的某些影响。