In this paper we prove convergence rates for time discretisation schemes for semi-linear stochastic evolution equations with additive or multiplicative Gaussian noise, where the leading operator $A$ is the generator of a strongly continuous semigroup $S$ on a Hilbert space $X$, and the focus is on non-parabolic problems. The main results are optimal bounds for the uniform strong error $$\mathrm{E}_{k}^{\infty} := \Big(\mathbb{E} \sup_{j\in \{0, \ldots, N_k\}} \|U(t_j) - U^j\|^p\Big)^{1/p},$$ where $p \in [2,\infty)$, $U$ is the mild solution, $U^j$ is obtained from a time discretisation scheme, $k$ is the step size, and $N_k = T/k$. The usual schemes such as splitting/exponential Euler, implicit Euler, and Crank-Nicolson, etc.\ are included as special cases. Under conditions on the nonlinearity and the noise we show - $\mathrm{E}_{k}^{\infty}\lesssim k \log(T/k)$ (linear equation, additive noise, general $S$); - $\mathrm{E}_{k}^{\infty}\lesssim \sqrt{k} \log(T/k)$ (nonlinear equation, multiplicative noise, contractive $S$); - $\mathrm{E}_{k}^{\infty}\lesssim k \log(T/k)$ (nonlinear wave equation, multiplicative noise). The logarithmic factor can be removed if the splitting scheme is used with a (quasi)-contractive $S$. The obtained bounds coincide with the optimal bounds for SDEs. Most of the existing literature is concerned with bounds for the simpler pointwise strong error $$\mathrm{E}_k:=\bigg(\sup_{j\in \{0,\ldots,N_k\}}\mathbb{E} \|U(t_j) - U^{j}\|^p\bigg)^{1/p}.$$ Applications to Maxwell equations, Schr\"odinger equations, and wave equations are included. For these equations our results improve and reprove several existing results with a unified method.
翻译:在本文中,我们证明对半线性硬化变异方程式的时间离散方案的趋同率{(线性硬化的硬化或倍化的Gausian噪声), 主要的操作员$A是Hilbert空间上强烈连续半组美元(S$)的生成者$X美元, 重点是非抛出问题。 主要结果为统一强差的最佳约束$\ mathrm{E<unk> k立方} : =Big( mathb{E}\supredial dislation) ; =Big (n_ k) 硬化的进化方程 0. 0;\ eldots, N_kr\\\ 美元 (t_j) - Ujjj_p\\ big_BAR_BAR_ 美元 美元; $ptrecial_ committeal $2\ in Sinftypecial rals.</s>