This work proposes a rapid algorithm, BM-Global, for nuclear-norm-regularized convex and low-rank matrix optimization problems. BM-Global efficiently decreases the objective value via low-cost steps leveraging the nonconvex but smooth Burer-Monteiro (BM) decomposition, while effectively escapes saddle points and spurious local minima ubiquitous in the BM form to obtain guarantees of fast convergence rates to the global optima of the original nuclear-norm-regularized problem through aperiodic inexact proximal gradient steps on it. The proposed approach adaptively adjusts the rank for the BM decomposition and can provably identify an optimal rank for the BM decomposition problem automatically in the course of optimization through tools of manifold identification. BM-Global hence also spends significantly less time on parameter tuning than existing matrix-factorization methods, which require an exhaustive search for finding this optimal rank. Extensive experiments on real-world large-scale problems of recommendation systems, regularized kernel estimation, and molecular conformation confirm that BM-Global can indeed effectively escapes spurious local minima at which existing BM approaches are stuck, and is a magnitude faster than state-of-the-art algorithms for low-rank matrix optimization problems involving a nuclear-norm regularizer.
翻译:这项工作提出了一种快速的算法,即BM-Global,用于处理核-北常规混凝土和低级基质优化问题。BM-Global高效地通过低成本步骤降低客观价值,利用非混凝土但平滑的Burer-Monteiro(BM)分解法,同时有效地摆脱了马鞍点和在BM形式上虚幻的当地迷你微型无处不在,从而获得保证快速趋同率的保证,以便通过周期性不合规的近乎成熟的梯度步骤,解决最初的核-北常规问题。 拟议的办法调整BMM分解的等级,并通过多重识别工具,在优化过程中自动确定BM分解问题的最佳等级。 BM-Glob-Global在参数调整方面花费的时间也大大少于现有的基调控方法,这需要详尽地寻找这一最佳等级。关于建议系统、定期化内核内层系统大规模问题的广泛实验,以及分子顺质调整证实,在常规化过程中,在优化过程中,常规的BMBM-BM-BM-I-BMAR系统确实能够有效地摆脱现行的快速的系统。